Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gas flow in plant microfluidic networks controlled by capillary valves.

Identifieur interne : 002219 ( Main/Exploration ); précédent : 002218; suivant : 002220

Gas flow in plant microfluidic networks controlled by capillary valves.

Auteurs : M. Capron [France] ; Ph Tordjeman [France] ; F. Charru [France] ; E. Badel [France] ; H. Cochard [France]

Source :

RBID : pubmed:24730949

Descripteurs français

English descriptors

Abstract

The xylem vessels of trees constitute a model natural microfluidic system. In this work, we have studied the mechanism of air flow in the Populus xylem. The vessel microstructure was characterized by optical microscopy, transmission electronic microscopy (TEM), and atomic force microscopy (AFM) at different length scales. The xylem vessels have length ≈15 cm and diameter ≈20μm. Flow from one vessel to the next occurs through ∼102 pits, which are grouped together at the ends of the vessels. The pits contain a thin, porous pit membrane with a thickness of 310 nm. We have measured the Young's moduli of the vessel wall and of the pits (both water-saturated and after drying) by specific nanoindentation and nanoflexion experiments with AFM. We found that both the dried and water-saturated pit membranes have Young's modulus around 0.4 MPa, in agreement with values obtained by micromolding of pits deformed by an applied pressure difference. Air injection experiments reveal that air flows through the xylem vessels when the differential pressure across a sample is larger than a critical value ΔPc=1.8 MPa. In order to model the air flow rate for ΔP⩾ΔPc, we assumed the pit membrane to be a porous medium that is strained by the applied pressure difference. Water menisci in the pit pores play the role of capillary valves, which open at ΔP=ΔPc. From the point of view of the plant physiology, this work presents a basic understanding of the physics of bordered pits.

DOI: 10.1103/PhysRevE.89.033019
PubMed: 24730949


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gas flow in plant microfluidic networks controlled by capillary valves.</title>
<author>
<name sortKey="Capron, M" sort="Capron, M" uniqKey="Capron M" first="M" last="Capron">M. Capron</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Toulouse</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tordjeman, Ph" sort="Tordjeman, Ph" uniqKey="Tordjeman P" first="Ph" last="Tordjeman">Ph Tordjeman</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Toulouse</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Charru, F" sort="Charru, F" uniqKey="Charru F" first="F" last="Charru">F. Charru</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Toulouse</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Badel, E" sort="Badel, E" uniqKey="Badel E" first="E" last="Badel">E. Badel</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA, UMR 547 PIAF, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France and and Clermont Université, Université Blaise Pascal, UMR A547 PIAF, F-63000 Clermont-Ferrand Cedex 2, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR 547 PIAF, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France and and Clermont Université, Université Blaise Pascal, UMR A547 PIAF, F-63000 Clermont-Ferrand Cedex 2</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cochard, H" sort="Cochard, H" uniqKey="Cochard H" first="H" last="Cochard">H. Cochard</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA, UMR 547 PIAF, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France and and Clermont Université, Université Blaise Pascal, UMR A547 PIAF, F-63000 Clermont-Ferrand Cedex 2, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR 547 PIAF, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France and and Clermont Université, Université Blaise Pascal, UMR A547 PIAF, F-63000 Clermont-Ferrand Cedex 2</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24730949</idno>
<idno type="pmid">24730949</idno>
<idno type="doi">10.1103/PhysRevE.89.033019</idno>
<idno type="wicri:Area/Main/Corpus">002231</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002231</idno>
<idno type="wicri:Area/Main/Curation">002231</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002231</idno>
<idno type="wicri:Area/Main/Exploration">002231</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gas flow in plant microfluidic networks controlled by capillary valves.</title>
<author>
<name sortKey="Capron, M" sort="Capron, M" uniqKey="Capron M" first="M" last="Capron">M. Capron</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Toulouse</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tordjeman, Ph" sort="Tordjeman, Ph" uniqKey="Tordjeman P" first="Ph" last="Tordjeman">Ph Tordjeman</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Toulouse</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Charru, F" sort="Charru, F" uniqKey="Charru F" first="F" last="Charru">F. Charru</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Toulouse</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Badel, E" sort="Badel, E" uniqKey="Badel E" first="E" last="Badel">E. Badel</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA, UMR 547 PIAF, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France and and Clermont Université, Université Blaise Pascal, UMR A547 PIAF, F-63000 Clermont-Ferrand Cedex 2, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR 547 PIAF, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France and and Clermont Université, Université Blaise Pascal, UMR A547 PIAF, F-63000 Clermont-Ferrand Cedex 2</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cochard, H" sort="Cochard, H" uniqKey="Cochard H" first="H" last="Cochard">H. Cochard</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA, UMR 547 PIAF, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France and and Clermont Université, Université Blaise Pascal, UMR A547 PIAF, F-63000 Clermont-Ferrand Cedex 2, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR 547 PIAF, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France and and Clermont Université, Université Blaise Pascal, UMR A547 PIAF, F-63000 Clermont-Ferrand Cedex 2</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Physical review. E, Statistical, nonlinear, and soft matter physics</title>
<idno type="eISSN">1550-2376</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Capillary Action (MeSH)</term>
<term>Computer Simulation (MeSH)</term>
<term>Elastic Modulus (physiology)</term>
<term>Friction (physiology)</term>
<term>Gases (metabolism)</term>
<term>Microfluidics (methods)</term>
<term>Models, Biological (MeSH)</term>
<term>Populus (metabolism)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Action capillaire (MeSH)</term>
<term>Eau (métabolisme)</term>
<term>Friction (physiologie)</term>
<term>Gaz (métabolisme)</term>
<term>Microfluidique (méthodes)</term>
<term>Module d'élasticité (physiologie)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Populus (métabolisme)</term>
<term>Simulation numérique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Gases</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Microfluidics</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Eau</term>
<term>Gaz</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Microfluidique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Friction</term>
<term>Module d'élasticité</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Elastic Modulus</term>
<term>Friction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Capillary Action</term>
<term>Computer Simulation</term>
<term>Models, Biological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Action capillaire</term>
<term>Modèles biologiques</term>
<term>Simulation numérique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The xylem vessels of trees constitute a model natural microfluidic system. In this work, we have studied the mechanism of air flow in the Populus xylem. The vessel microstructure was characterized by optical microscopy, transmission electronic microscopy (TEM), and atomic force microscopy (AFM) at different length scales. The xylem vessels have length ≈15 cm and diameter ≈20μm. Flow from one vessel to the next occurs through ∼102 pits, which are grouped together at the ends of the vessels. The pits contain a thin, porous pit membrane with a thickness of 310 nm. We have measured the Young's moduli of the vessel wall and of the pits (both water-saturated and after drying) by specific nanoindentation and nanoflexion experiments with AFM. We found that both the dried and water-saturated pit membranes have Young's modulus around 0.4 MPa, in agreement with values obtained by micromolding of pits deformed by an applied pressure difference. Air injection experiments reveal that air flows through the xylem vessels when the differential pressure across a sample is larger than a critical value ΔPc=1.8 MPa. In order to model the air flow rate for ΔP⩾ΔPc, we assumed the pit membrane to be a porous medium that is strained by the applied pressure difference. Water menisci in the pit pores play the role of capillary valves, which open at ΔP=ΔPc. From the point of view of the plant physiology, this work presents a basic understanding of the physics of bordered pits. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24730949</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1550-2376</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>89</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Physical review. E, Statistical, nonlinear, and soft matter physics</Title>
<ISOAbbreviation>Phys Rev E Stat Nonlin Soft Matter Phys</ISOAbbreviation>
</Journal>
<ArticleTitle>Gas flow in plant microfluidic networks controlled by capillary valves.</ArticleTitle>
<Pagination>
<MedlinePgn>033019</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The xylem vessels of trees constitute a model natural microfluidic system. In this work, we have studied the mechanism of air flow in the Populus xylem. The vessel microstructure was characterized by optical microscopy, transmission electronic microscopy (TEM), and atomic force microscopy (AFM) at different length scales. The xylem vessels have length ≈15 cm and diameter ≈20μm. Flow from one vessel to the next occurs through ∼102 pits, which are grouped together at the ends of the vessels. The pits contain a thin, porous pit membrane with a thickness of 310 nm. We have measured the Young's moduli of the vessel wall and of the pits (both water-saturated and after drying) by specific nanoindentation and nanoflexion experiments with AFM. We found that both the dried and water-saturated pit membranes have Young's modulus around 0.4 MPa, in agreement with values obtained by micromolding of pits deformed by an applied pressure difference. Air injection experiments reveal that air flows through the xylem vessels when the differential pressure across a sample is larger than a critical value ΔPc=1.8 MPa. In order to model the air flow rate for ΔP⩾ΔPc, we assumed the pit membrane to be a porous medium that is strained by the applied pressure difference. Water menisci in the pit pores play the role of capillary valves, which open at ΔP=ΔPc. From the point of view of the plant physiology, this work presents a basic understanding of the physics of bordered pits. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Capron</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tordjeman</LastName>
<ForeName>Ph</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Charru</LastName>
<ForeName>F</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Badel</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>INRA, UMR 547 PIAF, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France and and Clermont Université, Université Blaise Pascal, UMR A547 PIAF, F-63000 Clermont-Ferrand Cedex 2, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cochard</LastName>
<ForeName>H</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>INRA, UMR 547 PIAF, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France and and Clermont Université, Université Blaise Pascal, UMR A547 PIAF, F-63000 Clermont-Ferrand Cedex 2, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>03</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Phys Rev E Stat Nonlin Soft Matter Phys</MedlineTA>
<NlmUniqueID>101136452</NlmUniqueID>
<ISSNLinking>1539-3755</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005740">Gases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002197" MajorTopicYN="N">Capillary Action</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055119" MajorTopicYN="N">Elastic Modulus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017276" MajorTopicYN="N">Friction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005740" MajorTopicYN="N">Gases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044085" MajorTopicYN="N">Microfluidics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>12</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24730949</ArticleId>
<ArticleId IdType="doi">10.1103/PhysRevE.89.033019</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Auvergne (région administrative)</li>
<li>Auvergne-Rhône-Alpes</li>
<li>Midi-Pyrénées</li>
<li>Occitanie (région administrative)</li>
</region>
<settlement>
<li>Clermont-Ferrand</li>
<li>Toulouse</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Occitanie (région administrative)">
<name sortKey="Capron, M" sort="Capron, M" uniqKey="Capron M" first="M" last="Capron">M. Capron</name>
</region>
<name sortKey="Badel, E" sort="Badel, E" uniqKey="Badel E" first="E" last="Badel">E. Badel</name>
<name sortKey="Charru, F" sort="Charru, F" uniqKey="Charru F" first="F" last="Charru">F. Charru</name>
<name sortKey="Cochard, H" sort="Cochard, H" uniqKey="Cochard H" first="H" last="Cochard">H. Cochard</name>
<name sortKey="Tordjeman, Ph" sort="Tordjeman, Ph" uniqKey="Tordjeman P" first="Ph" last="Tordjeman">Ph Tordjeman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002219 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002219 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24730949
   |texte=   Gas flow in plant microfluidic networks controlled by capillary valves.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24730949" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020